Inteligencia Artificial en el agro

Están las condiciones para la Inteligencia Artificial en el agro

La inteligencia artificial se puede considerar como la capacidad de las computadoras para usar algoritmos, aprender de los datos y utilizar lo aprendido en la toma de decisiones tal y como lo haría un ser humano. Uno de los enfoques principales de la inteligencia artificial es el Machine Learning, cuyo objetivo es desarrollar técnicas que permitan que las computadoras aprendan, es decir que su desempeño mejora con la experiencia y mediante el uso de datos.

Cómo se aplica

Antes usaban big data la predicción de catástrofes naturales, a través de geo-data; eso me llevó a pensar que es una herramienta para brindar soluciones reales a todos aquellos rubros ligados a la tierra. Por ejemplo, el relevamiento de un terreno con un drone ya puede ser un punto de partida para un trabajo de inteligencia artificial, generar un tablero de datos, ya sea con fines de seguridad, topográficos, de mapas o de cultivos; eso sería un mínimo punto de partida para todo lo que se puede hacer”. Pero la adopción real de procesos machine learning o IA en una empresa es mucho más compleja: “El primer paso es contar con un modelo predictivo, por ejemplo, para calcular cuánto se va a vender de un producto, pero luego esos datos tienen que estar implementados en un ciclo de decisiones basadas en la predicción; un ciclo que está corriendo todo el tiempo, actualizado con los datos que van cambiando, y además, todo el que tenga que tomar una decisión en la empresa debe consultar esas conclusiones para tomarla. Las tecnologías están maduras para ser usadas, lo que falta son productos específicos para cada industria, lo que vamos a ver en los próximos años”, se entusiasma el especialista.

En el agro

El especialista consultado es optimista en la creación de nuevos productos de inteligencia artificial específicos, por nichos de consumo, y dentro de las industrias productivas, ve al campo como principal candidata, por ejemplo en la predicción de cultivos. “Veo a la industria agropecuaria como donde potencialmente nos podríamos desarrollar. El agro siempre ha invertido en tecnología, agrotech, pero está un poco rezagado en la digitalización completa de todos sus procesos. De todas maneras, allí hay datos digitales y noción de su importancia; hay cultura de datos.” 

Para ellos aplicamos nuestras herramientas a la distribución logística de su producción, a algo tan simple como a las rutas de sus camiones. con un modelo de optimización matemática conseguimos ahorro de combustible, entregas más rápidas, menor contaminación. Es un ejemplo que al agro le puede interesar.” “Optimizar procesos a través de modelos de predicción y segmentación no es más ni menos cómo ayudo al cliente a vender más, a conseguir nuevos clientes y a fidelizar los que tenés. Cómo organizar los datos para entender rápido los indicadores clave, lo que hay que hacer. de allí en más se potencia a través del efecto contagio de la industria”.

Dejar respuesta

Please enter your comment!
Please enter your name here